חAmIBIA UחIVERSITY OF SCIEMCE ATD TECHTOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF INFORMATICS BACHELOR OF COMPUTER SCIENCE	
QUALIFICATION CODE: O7BAIF 07BACS	LEVEL: 6
COURSE CODE: ASP612S	COURSE NAME: APPLIED STATISTICS \& PROBABILITY FOR IT
SESSION: JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINERS:	MR. A. ROUX
MODERATOR:	DR. I.K.O. AJIBOLA

INSTRUCTIONS

1. Answer ALL the questions.
2. Number the answers clearly and show clearly ALL the steps used in the calculations.
3. All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIAL

1. Non-Programmable Calculator without the cover.

ATTACHMENTS

1. Formulae sheet.
2. Statistical tables (Z and T).
3. $1 \times A_{4}$ Graph Sheet

THIS QUESTION PAPER CONSISTS OF 6 PAGES (Including this front page)

QUESTION $1 \quad[14 \times 2=28]$

Write down the letter corresponding to your choice next to the question number

1.1) Which of the following methods are used in analysing categorical (qualitative) data
A. Bar charts, pie charts and Histogram
B. Bar charts, pie charts and frequency tables
C. Mean, median and mode
D.variance, standard deviation and coefficient of variation
E. None of the above
1.2) In a positively skewed distribution, the mean is
A. below the median
B. above the median
C. equal to the median
D. below the mode
E. none of the above
1.3) Which of the following are measures of dispersion (spread)
A. Range, Variance and Standard deviation
B. Range, mean, median and mode
C. Mean, median and mode
D. Quartile, Decile and percentile
E. Mean, median and percentile
1.4) Census are rarely done as compared to sample surveys because:
A. Sample surveys can be done in a short time as compared to censuses
B. Sample surveys are cheap to implement as compared to censuses
C. Sample surveys are easy to implement as compared to censuses
D. All of the above
1.5) Fill in the blank to make the following sentence true: "The of a
particular outcome is the number of times it occurs within a specific sample of a population."
A. Fequency
B. Varaince
C. Mean deviation
D. Distribution
E. Mean
1.6) A Sample of a population is:
A. A subset of the population
B. An experiment in the population
C. An outcome of the population
D. A variable in the population
E. All of the above
1.7) Height is a \qquad measurement scale variable
A. Ordinal
B. Interval
C. Ratio
D. Nominal
E. None of the above
1.8) Consider the shoes size of 12 students at NUST:
$4,6,12,7,9,7,8,11,8,8,11,5$
Which of the following answers is incorrect?
A. This is a bimodal distribution
B. The range of this data values is 8 .
C. The modal shoes size is 8 .
D. The lowest value of this data values is 4 .
E. The median of this data values is 8 .
1.9) Which of the following statements is not true about the mean?
A. The value of the mean times the number of observations equals the sum of the of all observations
B. It utilizes all values in its calculation
C. It is not affected by extreme values (outliers)
D. It is the best measure of central tendency when the data is not skewed
E. In a symmetric distribution, the mean, the median and the mode are all equal
1.10) For each of the following random variables, state the data type(i.e.
Categorical or Numeric) of each random variable and the measurement scale(i.e. nominal, ordinal, interval, or ratio scaled):
(i) The ages of athletes in a marathon
(ii) The marital status of employees
(iii) The ranked preferences of employees to three different pay schemes
(iv) The rainfall received for April 2019
(v) The distances travelled by ten tourists

QUESTION 2 [37]

2.1) A variable is normally distributed with mean 6 and standard deviation 2. Find the probability that the variable will
2.1.1) lie between 1 and 7 (inclusive).
2.1.2) at least 5.
(4)
2.1.3) at most 4
2.2) The Ministry of Health claims that 40% of patients on physiotherapy treatment recover within 6 month. This is denied by the Medical Aid Scheme. To prove the Ministry's claim wrong, the Medical Aid Scheme commissioned a survey amongst seventy six physiotherapy patients in the Hardap Region. Out of the 76 patients 46 of them did not recover within 6 monthhs. Test the appropriate hypothesis in this matter.
2.2.1) State the hypothesis
2.2.2) Formulate the decision rule using a 10% level of significance
2.2.3) Select and compute the sample statistic
2.2.4 What is the decision and conclusion
2.3) The Office of the Registrar has revealed that only 12 out of every 20 students graduate. Based upon this assumption, determine the probability that out of a
random sample of 5 students
2.3.1) None will graduate
(3)
2.3.2) All will graduate.
(3)
2.3.4) At least one student will graduate
2.3.3) At most one student will graduate

QUESTION 3 [20]

3.1 Suppose that the following contingency table was set up:

	C	D
A	10	30
B	25	35

What is the probability of:
3.1.1 Event A
3.1.2 Event A and C
3.1.3 Event A and B
3.1.4 Event B or D
(2)
3.1.5 Event C or D
(2)
3.1.6 P(A/D)
(2)
3.2) A local ambulance service handles 0 to 5 service calls on any given day. The probability distribution for the number of service calls is as follows

Number of service calls (x)	Probability, $\mathrm{p}(\mathrm{x})$
0	0.10
1	0.15
2	0.30
3	0.20
4	0.15
5	0.10

3.2.1 Find $\mathrm{P}(1 \leq x \leq 3)$
3.2.2 What is the expected number of service calls?
3.2.3 What is the variance in the number of service calls?
3.2.4 What is the standard deviation?
3.2.5 What is the coefficient of variation in the number of service calls

QUESTION 4 [15]

The table below shows the annual rainfall ($\times 100 \mathrm{~mm}$) recorded during the last decade at the Goabeb Research Station in the Namib Desert

Year	Rainfall
2004	3.0
2005	4.2
2006	4.8
2007	3.7
2008	3.4
2009	4.3
2010	5.6
2011	4.4
2012	3.8
2013	4.1

4.1 Construct a scatter plot

4.2 Determine the least squares trend line equation, using the sequential coding method with $2004=1$.
4.3 Use the trend line equation obtained in 4.2 to find rainfall for 2002 and 2017

[^0]

APPPENDIX A

Population mean, raw data

$$
\mu=\frac{\sum x}{N}
$$

Samplemean, raw data

$$
\bar{x}=\frac{\sum x}{n}
$$

Weighted mean
$\overline{X_{w}}=\frac{w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{n} X_{n}}{w_{1}+w_{2}+\ldots+w_{n}}$

Geometricmean

$$
G M=\sqrt[n]{\left(X_{1}\right)\left(X_{2}\right)\left(X_{3}\right) \cdots\left(X_{n}\right)}
$$

Geometricmean rate of increase

$$
\mathrm{GM}=\sqrt[n]{\frac{\text { Value at end of period }}{\text { Value at start of period }}}-1.0
$$

Sample mean grouped data

$$
\bar{x}=\frac{\sum f x}{n}
$$

Median of grouped data

$$
\text { Median }=L+\frac{\frac{n}{2}-C F}{f}(\text { Class width })
$$

Mean deviation

$$
M D=\frac{\sum|x-\bar{x}|}{n}
$$

Linear regression equation

$$
Y=a+h X
$$

Sample variance for raw data

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

Samplevariance, raw data computational form

$$
s^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}
$$

Sample standard deviation, raw data

$$
s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}
$$

Sample standard deviation, grouped data

$$
s=\sqrt{\frac{\sum f X^{2}-\frac{\left(\sum \mathrm{fx}\right)^{2}}{n}}{n-1}}
$$

Coefficient of variation

$$
C V=\frac{s}{x}(100)
$$

Location of percentile

$$
L_{p}=(n+1) \frac{P}{100}
$$

Pearson's Correlation coefficient
$r=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{\left[n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}\right]\left[n\left(\sum Y^{2}\right)-\left(\sum Y\right)^{2}\right]}}$

Correlation test of hypothesis

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

Population standard deviation for raw data

$$
\sigma=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}
$$

Population variance for raw data

$$
\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}
$$

Slope of regression line

$$
b=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}}
$$

Intercept of a regression line

$$
a=\frac{\sum Y}{n}-b\left(\frac{\sum X}{n}\right)
$$

The Range

$$
\text { Range }=\text { highest - lowest }
$$

APPENDIX B: ADDITIONAL FORMULAE

Mode $=L+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) \times c$
position $Q_{i}=\frac{j n}{4}$
value $\quad Q_{j}=L+\frac{\left.\left(\frac{j n}{4}-F\right)\right) \times c}{f_{Q_{j}}}$
position $P_{j}=\frac{j n}{100}$ value $\quad P_{j}=L+\frac{\left.\left(\frac{j n}{100}-F\right)\right) \times c}{f_{P_{j}}}$

$$
\begin{array}{lc}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} & P(x)=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x} \quad \mathrm{P}(\mathrm{x})=\frac{\lambda^{x} e^{-\lambda}}{x!} \\
z=\frac{x-\mu}{\sigma} & z_{\text {calc }}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \\
z_{\text {calc }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \quad t_{\text {calc }}=\frac{\bar{x}_{\text {calc }}=\frac{\bar{x}-\mu}{s / \sqrt{n}}}{\sqrt{\frac{(n-1) s_{1}^{2}+(n-1) s_{2}^{2}}{n_{1}+n_{2}-1}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \quad z_{\text {calc }}=\frac{p_{A}-p_{B}}{\sqrt{(p \times q)\left(\frac{1}{n_{A}}+\frac{1}{n_{B}}\right)}} \quad p=\frac{n_{A} p_{B}+n_{B} p_{A}}{n_{A}+n_{B}} & q=1-p
\end{array}
$$

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
$$

$$
F_{V}=P_{V}(1+i n) \quad F_{V}=P_{V}(1+i)^{n} \quad r=(1+i)^{m}-1 \quad D=B(1-i)^{n}
$$

$$
P=\frac{A}{(1+i)^{n}} \quad P V=\frac{P(1+i)^{n}}{(1+j)^{n}} \quad I R R=\frac{N_{1} I_{2}-N_{2} I_{1}}{N_{1}-N_{2}}
$$

APPENDIX A: The Standard Normal Distribution

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

APPENDIX B: The t-distribution

[^0]: Xxxxxxxxxxxxxxxxxxxxxxxx
 END OF EXAMINATION xxxxxxxxxxxxxxxx

